Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Cells ; 13(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38534312

RESUMO

Many essential biological processes are triggered by the proximity of molecules. Meanwhile, diverse approaches in synthetic biology, such as new biological parts or engineered cells, have opened up avenues to precisely control the proximity of molecules and eventually downstream signaling processes. This also applies to a main Ca2+ entry pathway into the cell, the so-called Ca2+ release-activated Ca2+ (CRAC) channel. CRAC channels are among other channels are essential in the immune response and are activated by receptor-ligand binding at the cell membrane. The latter initiates a signaling cascade within the cell, which finally triggers the coupling of the two key molecular components of the CRAC channel, namely the stromal interaction molecule, STIM, in the ER membrane and the plasma membrane Ca2+ ion channel, Orai. Ca2+ entry, established via STIM/Orai coupling, is essential for various immune cell functions, including cytokine release, proliferation, and cytotoxicity. In this review, we summarize the tools of synthetic biology that have been used so far to achieve precise control over the CRAC channel pathway and thus over downstream signaling events related to the immune response.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio , Sinalização do Cálcio , Sinalização do Cálcio/fisiologia , Biologia Sintética , Molécula 1 de Interação Estromal/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Imunidade
3.
Biochem Soc Trans ; 52(2): 747-760, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38526208

RESUMO

An important calcium (Ca2+) entry pathway into the cell is the Ca2+ release-activated Ca2+ (CRAC) channel, which controls a series of downstream signaling events such as gene transcription, secretion and proliferation. It is composed of a Ca2+ sensor in the endoplasmic reticulum (ER), the stromal interaction molecule (STIM), and the Ca2+ ion channel Orai in the plasma membrane (PM). Their activation is initiated by receptor-ligand binding at the PM, which triggers a signaling cascade within the cell that ultimately causes store depletion. The decrease in ER-luminal Ca2+ is sensed by STIM1, which undergoes structural rearrangements that lead to coupling with Orai1 and its activation. In this review, we highlight the current understanding of the Orai1 pore opening mechanism. In this context, we also point out the questions that remain unanswered and how these can be addressed by the currently emerging genetic code expansion (GCE) technology. GCE enables the incorporation of non-canonical amino acids with novel properties, such as light-sensitivity, and has the potential to provide novel insights into the structure/function relationship of CRAC channels at a single amino acid level in the living cell.


Assuntos
Cálcio , Proteína ORAI1 , Humanos , Proteína ORAI1/metabolismo , Cálcio/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Sinalização do Cálcio , Animais , Membrana Celular/metabolismo
4.
J Theor Biol ; 581: 111740, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38253220

RESUMO

The role of Ca2+ release-activated Ca2+ (CRAC) channels mediated by ORAI isoforms in calcium signalling has been extensively investigated. It has been shown that the presence or absence of different isoforms has a significant effect on store-operated calcium entry (SOCE). Yoast et al. (2020) showed that, in addition to the reported narrow-spike oscillations (whereby cytosolic calcium decreases quickly after a sharp increase), ORAI1 knockout HEK293 cells were able to oscillate with broad-spike oscillations (whereby cytosolic calcium decreases in a prolonged manner after a sharp increase) when stimulated with a muscarinic agonist. This suggests that Ca2+ influx through ORAI-mediated CRAC channels negatively regulates the duration of Ca2+ oscillations. We hypothesise that, through the activation of protein kinase C (PKC), ORAI1 negatively regulates phospholipase C (PLC) activity to decrease inositol 1,4,5-trisphosphate (IP3) production and limit the duration of agonist-evoked Ca2+ oscillations. Based on this hypothesis, we construct a new mathematical model, which shows that the formation of broad-spike oscillations is highly dependent on the absence of ORAI1. Predictions of this model are consistent with the experimental results.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio , Humanos , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Canais de Cálcio/metabolismo , Proteína Quinase C , Cálcio/metabolismo , Retroalimentação , Células HEK293 , Sinalização do Cálcio/fisiologia , Isoformas de Proteínas/metabolismo
5.
J Biol Chem ; 299(11): 105310, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37778728

RESUMO

T-cell receptor stimulation triggers cytosolic Ca2+ signaling by inositol-1,4,5-trisphosphate (IP3)-mediated Ca2+ release from the endoplasmic reticulum (ER) and Ca2+ entry through Ca2+ release-activated Ca2+ (CRAC) channels gated by ER-located stromal-interacting molecules (STIM1/2). Physiologically, cytosolic Ca2+ signaling manifests as regenerative Ca2+ oscillations, which are critical for nuclear factor of activated T-cells-mediated transcription. In most cells, Ca2+ oscillations are thought to originate from IP3 receptor-mediated Ca2+ release, with CRAC channels indirectly sustaining them through ER refilling. Here, experimental and computational evidence support a multiple-oscillator mechanism in Jurkat T-cells whereby both IP3 receptor and CRAC channel activities oscillate and directly fuel antigen-evoked Ca2+ oscillations, with the CRAC channel being the major contributor. KO of either STIM1 or STIM2 significantly reduces CRAC channel activity. As such, STIM1 and STIM2 synergize for optimal Ca2+ oscillations and activation of nuclear factor of activated T-cells 1 and are essential for ER refilling. The loss of both STIM proteins abrogates CRAC channel activity, drastically reduces ER Ca2+ content, severely hampers cell proliferation and enhances cell death. These results clarify the mechanism and the contribution of STIM proteins to Ca2+ oscillations in T-cells.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio , Sinalização do Cálcio , Humanos , Cálcio/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/genética , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Sinalização do Cálcio/genética , Células Jurkat , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Molécula 2 de Interação Estromal/genética , Molécula 2 de Interação Estromal/metabolismo , Técnicas de Inativação de Genes , Modelos Biológicos , Isoformas de Proteínas , Transporte Proteico/genética , Proliferação de Células/genética , Sobrevivência Celular/genética
6.
Int J Biol Macromol ; 253(Pt 3): 126937, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37722647

RESUMO

The prototypical calcium release-activated calcium (CRAC) channel, composed of STIM1 and Orai1, is a sought-after drug target for treating autoimmune disorders. Herein, we identified two novel and selective CRAC channel inhibitors, the indole-like compound C63368 and pyrazole core-containing compound C79413, potently and reversibly inhibiting the CRAC channel with low micromolar IC50s and sparing various off-target ion channels. These two compounds did not inhibit STIM1 activation or its coupling with Orai1, nor did they affect the channel's calcium-dependent fast inactivation. Instead, they directly acted on the Orai1 protein, with the channel's pore geometry profoundly affecting their potencies. In vitro, C63368 and C79413 effectively inhibited Jurkat cell proliferation and cytokines production in human T lymphocytes. Intragastric administration of C63368 and C79413 to mice yielded great therapeutic benefits in psoriasis and colitis animal models of autoimmune disorders, reducing serum cytokines production and significantly relieving pathological symptoms. It's worth noting, that this study provided the first insight into the characterization and mechanistic investigation of an indole-like CRAC channel antagonist. Altogether, the identification of these two highly selective CRAC channel antagonists, coupled with the elucidation of their action mechanisms, not only provides valuable template molecules but also offers profound insights for drug development targeting the CRAC channel.


Assuntos
Doenças Autoimunes , Canais de Cálcio Ativados pela Liberação de Cálcio , Humanos , Camundongos , Animais , Proteínas de Membrana/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Indóis/farmacologia , Citocinas/metabolismo
7.
J Cell Physiol ; 238(9): 2050-2062, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37332264

RESUMO

Orai1 is the pore-forming subunit of the store-operated Ca2+ release-activated Ca2+ (CRAC) channels involved in a variety of cellular functions. Two Orai1 variants have been identified, the long form, Orai1α, containing 301 amino acids, and the short form, Orai1ß, which arises from alternative translation initiation from methionines 64 or 71, in Orai1α. Orai1 is mostly expressed in the plasma membrane, but a subset of Orai1 is located in intracellular compartments. Here we show that Ca2+ store depletion leads to trafficking and insertion of compartmentalized Orai1α in the plasma membrane via a mechanism that is independent on changes in cytosolic free-Ca2+ concentration, as demonstrated by cell loading with the fast intracellular Ca2+ chelator dimethyl BAPTA in the absence of extracellular Ca2+ . Interestingly, thapsigargin (TG) was found to be unable to induce translocation of Orai1ß to the plasma membrane when expressed individually; by contrast, when Orai1ß is co-expressed with Orai1α, cell treatment with TG induced rapid trafficking and insertion of compartmentalized Orai1ß in the plasma membrane. Translocation of Orai1 forms to the plasma membrane was found to require the integrity of the actin cytoskeleton. Finally, expression of a dominant negative mutant of the small GTPase ARF6, and ARF6-T27N, abolished the translocation of compartmentalized Orai1 variants to the plasma membrane upon store depletion. These findings provide new insights into the mechanism that regulate the plasma membrane abundance of Orai1 variants after Ca2+ store depletion.


Assuntos
Canais de Cálcio , Canais de Cálcio Ativados pela Liberação de Cálcio , Proteína ORAI1 , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Sinalização do Cálcio , Membrana Celular/metabolismo , Proteína ORAI1/antagonistas & inibidores , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Tapsigargina/farmacologia , Humanos , Células HEK293
8.
J Cell Physiol ; 238(4): 714-726, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36952615

RESUMO

Store operated Ca2+ entry (SOCE) is a cornerstone for the maintenance of intracellular Ca2+ homeostasis and the regulation of a variety of cellular functions. SOCE is mediated by STIM and Orai proteins following the activation of inositol 1,4,5-trisphosphate receptors. Then, a reduction of the endoplasmic reticulum intraluminal Ca2+ concentration is sensed by STIM proteins, which undergo a conformational change and activate plasma membrane Ca2+ channels comprised by Orai proteins. STIM1/Orai-mediated Ca2+ signals are finely regulated and modulate the activity of different transcription factors, including certain isoforms of the nuclear factor of activated T-cells, the cAMP-response element binding protein, the nuclear factor κ-light chain-enhancer of activated B cells, c-fos, and c-myc. These transcription factors associate SOCE with a plethora of signaling events and cellular functions. Here we provide an overview of the current knowledge about the role of Orai channels in the regulation of transcription factors through Ca2+ -dependent signaling pathways.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio , Sinalização do Cálcio , Fatores de Transcrição , Cálcio/metabolismo , Membrana Celular/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Fatores de Transcrição/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo
9.
Nat Commun ; 14(1): 1286, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890174

RESUMO

Ca2+ release-activated Ca2+ (CRAC) channels, indispensable for the immune system and various other human body functions, consist of two transmembrane (TM) proteins, the Ca2+-sensor STIM1 in the ER membrane and the Ca2+ ion channel Orai1 in the plasma membrane. Here we employ genetic code expansion in mammalian cell lines to incorporate the photocrosslinking unnatural amino acids (UAA), p-benzoyl-L-phenylalanine (Bpa) and p-azido-L-phenylalanine (Azi), into the Orai1 TM domains at different sites. Characterization of the respective UAA-containing Orai1 mutants using Ca2+ imaging and electrophysiology reveal that exposure to UV light triggers a range of effects depending on the UAA and its site of incorporation. In particular, photoactivation at A137 using Bpa in Orai1 activates Ca2+ currents that best match the biophysical properties of CRAC channels and are capable of triggering downstream signaling pathways such as nuclear factor of activated T-cells (NFAT) translocation into the nucleus without the need for the physiological activator STIM1.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio , Animais , Humanos , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Canais de Cálcio/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Proteínas de Membrana/metabolismo , Membrana Celular/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Mamíferos/metabolismo , Proteínas de Neoplasias/metabolismo
10.
Sci Signal ; 16(771): eadd0509, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36749824

RESUMO

Stormorken syndrome is a multiorgan hereditary disease caused by dysfunction of the endoplasmic reticulum (ER) Ca2+ sensor protein STIM1, which forms the Ca2+ release-activated Ca2+ (CRAC) channel together with the plasma membrane channel Orai1. ER Ca2+ store depletion activates STIM1 by releasing the intramolecular "clamp" formed between the coiled coil 1 (CC1) and CC3 domains of the protein, enabling the C terminus to extend and interact with Orai1. The most frequently occurring mutation in patients with Stormorken syndrome is R304W, which destabilizes and extends the STIM1 C terminus independently of ER Ca2+ store depletion, causing constitutive binding to Orai1 and CRAC channel activation. We found that in cis deletion of one amino acid residue, Glu296 (which we called E296del) reversed the pathological effects of R304W. Homozygous Stim1 E296del+R304W mice were viable and phenotypically indistinguishable from wild-type mice. NMR spectroscopy, molecular dynamics simulations, and cellular experiments revealed that although the R304W mutation prevented CC1 from interacting with CC3, the additional deletion of Glu296 opposed this effect by enabling CC1-CC3 binding and restoring the CC domain interactions within STIM1 that are critical for proper CRAC channel function. Our results provide insight into the activation mechanism of STIM1 by clarifying the molecular basis of mutation-elicited protein dysfunction and pathophysiology.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio , Proteínas de Membrana , Camundongos , Animais , Proteínas de Membrana/metabolismo , Canais de Cálcio/metabolismo , Aminoácidos/metabolismo , Mutação , Retículo Endoplasmático/metabolismo , Molécula 1 de Interação Estromal/genética , Canais de Cálcio Ativados pela Liberação de Cálcio/genética , Proteína ORAI1/metabolismo , Cálcio/metabolismo
11.
Elife ; 122023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36806330

RESUMO

Ca2+ release-activated Ca2+ (CRAC) channels are activated by direct physical interactions between Orai1, the channel protein, and STIM1, the endoplasmic reticulum Ca2+ sensor. A hallmark of CRAC channels is fast Ca2+-dependent inactivation (CDI) which provides negative feedback to limit Ca2+ entry through CRAC channels. Although STIM1 is thought to be essential for CDI, its molecular mechanism remains largely unknown. Here, we examined a poorly understood gain-of-function (GOF) human Orai1 disease mutation, L138F, that causes tubular aggregate myopathy. Through pairwise mutational analysis, we determine that large amino acid substitutions at either L138 or the neighboring T92 locus located on the pore helix evoke highly Ca2+-selective currents in the absence of STIM1. We find that the GOF phenotype of the L138 pathogenic mutation arises due to steric clash between L138 and T92. Surprisingly, strongly activating L138 and T92 mutations showed CDI in the absence of STIM1, contradicting prevailing views that STIM1 is required for CDI. CDI of constitutively open T92W and L138F mutants showed enhanced intracellular Ca2+ sensitivity, which was normalized by re-adding STIM1 to the cells. Truncation of the Orai1 C-terminus reduced T92W CDI, indicating a key role for the Orai1 C-terminus for CDI. Overall, these results identify the molecular basis of a disease phenotype with broad implications for activation and inactivation of Orai1 channels.


Assuntos
Canais de Cálcio , Canais de Cálcio Ativados pela Liberação de Cálcio , Humanos , Canais de Cálcio/metabolismo , Proteína ORAI1/genética , Mutação , Canais de Cálcio Ativados pela Liberação de Cálcio/genética , Mutação com Ganho de Função , Molécula 1 de Interação Estromal/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
12.
Life Sci Alliance ; 6(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36690443

RESUMO

Store-operated Ca2+ entry (SOCE) is a universal Ca2+ influx pathway that is important for the function of many cell types. SOCE is controlled by the interaction of the ER Ca2+ sensor STIM1 with the plasma membrane Ca2+ channel Orai1. S417 is located in the third coiled-coil (CC3) domain of the C-terminus of STIM1. We found that single-point mutation of this residue (S417G) abolished STIM1 C-terminus interactions with Orai1. Mutation of S417 also abolished CAD-Orai1 binding and Orai1 channel activation, eliminated STIM1 puncta formation, and co-localization with Orai1 and SOCE. 2-APB was found to restore the binding of the STIM1 C-terminus mutant (S417G) to Orai1 and dose-dependently activate Orai1 channel. Both CBD and NBD of Orai1 are required for 2-APB-induced coupling between the Orai1 and STIM1 C-terminus mutant (S417G) and CRAC channel activation. We also demonstrated that 2-APB led to delayed activation of Orai1-K85E channel, although Orai1-K85E obviously impairs 2-APB-induced STIM1 C-terminus mutant (S417G)-Orai1 coupling. Our results suggest S417 in the CC3 domain of STIM1 is essential for STIM1-Orai1 binding and CRAC channel activation.


Assuntos
Canais de Cálcio , Canais de Cálcio Ativados pela Liberação de Cálcio , Canais de Cálcio/genética , Proteínas de Membrana/metabolismo , Proteína ORAI1 , Membrana Celular/metabolismo
14.
EMBO Mol Med ; 14(9): e15687, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35919953

RESUMO

Inflammatory bowel disease (IBD) is characterized by dysregulated intestinal immune responses. Using mass cytometry (CyTOF) to analyze the immune cell composition in the lamina propria (LP) of patients with ulcerative colitis (UC) and Crohn's disease (CD), we observed an enrichment of CD4+ effector T cells producing IL-17A and TNF, CD8+ T cells producing IFNγ, T regulatory (Treg) cells, and innate lymphoid cells (ILC). The function of these immune cells is regulated by store-operated Ca2+ entry (SOCE), which results from the opening of Ca2+ release-activated Ca2+ (CRAC) channels formed by ORAI and STIM proteins. We observed that the pharmacologic inhibition of SOCE attenuated the production of proinflammatory cytokines including IL-2, IL-4, IL-6, IL-17A, TNF, and IFNγ by human colonic T cells and ILCs, reduced the production of IL-6 by B cells and the production of IFNγ by myeloid cells, but had no effect on the viability, differentiation, and function of intestinal epithelial cells. T cell-specific deletion of CRAC channel genes in mice showed that Orai1, Stim1, and Stim2-deficient T cells have quantitatively distinct defects in SOCE, which correlate with gradually more pronounced impairment of cytokine production by Th1 and Th17 cells and the severity of IBD. Moreover, the pharmacologic inhibition of SOCE with a selective CRAC channel inhibitor attenuated IBD severity and colitogenic T cell function in mice. Our data indicate that SOCE inhibition may be a suitable new approach for the treatment of IBD.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio , Doenças Inflamatórias Intestinais , Animais , Linfócitos T CD8-Positivos/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Humanos , Imunidade Inata , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Camundongos , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/genética , Células Th17/metabolismo
15.
EMBO Mol Med ; 14(9): e16489, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35969215

RESUMO

Inflammatory bowel disease (IBD) is a collective term for inflammatory diseases of the human gastrointestinal (GI) tract that are characterized by perturbations in the intestinal immune responses. In their study, Letizia et al (2022) found an enrichment of CD4+ effector T cells, interferon gamma (IFNγ) producing CD8+ T cells, regulatory T cells, and innate lymphoid cells (ILC) in the lamina propria (LP) of IBD patients. In these cells, pharmacological inhibition of store-operated calcium entry (SOCE) reduced cytokine production. In addition, in a murine IBD model, systemic SOCE inhibition reduced IBD severity and weight loss.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio , Doenças Inflamatórias Intestinais , Animais , Linfócitos T CD8-Positivos , Humanos , Imunidade Inata , Mucosa Intestinal , Linfócitos , Camundongos
16.
Hum Immunol ; 83(8-9): 645-655, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35660323

RESUMO

The vulnerability of older adults to bacterial infections has been associated with age-related changes in neutrophils. We analyzed the consequences of aging on calcium (Ca2+) mobilization and TRPM2 and CRAC channels expression in human neutrophils. The percentages of granulocytes, mature neutrophils, and neutrophil precursors were equivalent between young and older adults. However, neutrophil chemotaxis towards IL-8, C5a, or fMLP was lower in older adults of both sexes. Interestingly, a stronger Ca2+ transient followed by an identical Ca2+ influx to IL-8 was observed in older adult females. In addition, the Ca2+ response to LPS was delayed and prolonged in neutrophils of older adult males. There was no significant difference in Ca2+ response to fMLP, C5a, or store-operated Ca2+ entry in the older adults. There were also no differences in the expression of CXCR2, CD88, FPLR1, and TLR4. Interestingly, TRPM2- and ORAI1-mRNA expression was lower in neutrophils of older adults, mainly in females. Both channels were detected intracellularly in the neutrophils. TRPM2 was in late endosomes in young adults and in lysosomes in older adult neutrophils. In summary, defective neutrophil chemotaxis in aging seemed not to stem from alterations in Ca2+ signals; nevertheless, the low TRPM2 and ORAI1 expression may affect other functions.


Assuntos
Envelhecimento , Canais de Cálcio Ativados pela Liberação de Cálcio , Sinalização do Cálcio , Neutrófilos , Fatores Sexuais , Canais de Cátion TRPM , Idoso , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Feminino , Humanos , Interleucina-8/farmacologia , Masculino , Neutrófilos/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo
17.
Cells ; 11(11)2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35681544

RESUMO

All human life starts with a calcium (Ca2+) wave. This ion regulates a plethora of cellular functions ranging from fertilisation and birth to development and cell death. A sophisticated system is responsible for maintaining the essential, tight concentration of calcium within cells. Intricate components of this Ca2+ network are store-operated calcium channels in the cells' membrane. The best-characterised store-operated channel is the Ca2+ release-activated Ca2+ (CRAC) channel. Currents through CRAC channels are critically dependent on the correct function of two proteins: STIM1 and Orai1. A disruption of the precise mechanism of Ca2+ entry through CRAC channels can lead to defects and in turn to severe impacts on our health. Mutations in either STIM1 or Orai1 proteins can have consequences on our immune cells, the cardiac and nervous system, the hormonal balance, muscle function, and many more. There is solid evidence that altered Ca2+ signalling through CRAC channels is involved in the hallmarks of cancer development: uncontrolled cell growth, resistance to cell death, migration, invasion, and metastasis. In this work we highlight the importance of Ca2+ and its role in human health and disease with focus on CRAC channels.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio , Cálcio , Cálcio/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Humanos , Alfabetização , Proteína ORAI1/metabolismo
18.
Immunol Lett ; 248: 37-44, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35714789

RESUMO

A novel mast cell-specific G-protein-coupled receptor (GPCR), known as Mas-related G protein-coupled receptor-B2 (MRGPRB2), plays important roles in immune response. However, the opening of ion channels mediated by MRGPRB2 activation remains unclear. In this study, we found that [Ca2+]i elevation and voltage-dependent current generated by MRGPRB2 activation were correlated with extracellular calcium concentration. The increases in [Ca2+]i and voltage-dependent current caused by MRGPRB2 activation were blocked by U73122 (PLC blocker) or 2-APB (IP3 blocker) or synta66 (ORAI blocker). The voltage-dependent current induced by MRGPRB2 was inhibited by calcium-activated chlorine channel (CACCS) blockers, DIDS, or NPPB. Our results indicated the involvement of the PLC-IP3-ORAI signaling pathway and CACCS in MRGPRB2-mediated mast cell activation.


Assuntos
Cálcio , Mastócitos , Animais , Cálcio/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Canais de Cloreto/metabolismo , Fosfatos de Inositol/metabolismo , Camundongos , Peritônio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Fosfolipases Tipo C/metabolismo
19.
Cells ; 11(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35406753

RESUMO

Plasma membrane protein channels provide a passageway for ions to access the intracellular milieu. Rapid entry of calcium ions into cells is controlled mostly by ion channels, while Ca2+-ATPases and Ca2+ exchangers ensure that cytosolic Ca2+ levels ([Ca2+]cyt) are maintained at low (~100 nM) concentrations. Some channels, such as the Ca2+-release-activated Ca2+ (CRAC) channels and voltage-dependent Ca2+ channels (CACNAs), are highly Ca2+-selective, while others, including the Transient Receptor Potential Melastatin (TRPM) family, have broader selectivity and are mostly permeable to monovalent and divalent cations. Activation of CRAC channels involves the coupling between ORAI1-3 channels with the endoplasmic reticulum (ER) located Ca2+ store sensor, Stromal Interaction Molecules 1-2 (STIM1/2), a pathway also termed store-operated Ca2+ entry (SOCE). The TRPM family is formed by 8 members (TRPM1-8) permeable to Mg2+, Ca2+, Zn2+ and Na+ cations, and is activated by multiple stimuli. Recent studies indicated that SOCE and TRPM structure-function are interlinked in some instances, although the molecular details of this interaction are only emerging. Here we review the role of TRPM and SOCE in Ca2+ handling and highlight the available evidence for this interaction.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio , Canais de Cátion TRPM , Canais de Potencial de Receptor Transitório , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Proteína ORAI1/metabolismo
20.
Crit Care ; 26(1): 101, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395943

RESUMO

BACKGROUND: Calcium release-activated calcium (CRAC) channel inhibitors block proinflammatory cytokine release, preserve endothelial integrity and may effectively treat patients with severe COVID-19 pneumonia. METHODS: CARDEA was a phase 2, randomized, double-blind, placebo-controlled trial evaluating the addition of Auxora, a CRAC channel inhibitor, to corticosteroids and standard of care in adults with severe COVID-19 pneumonia. Eligible patients were adults with ≥ 1 symptom consistent with COVID-19 infection, a diagnosis of COVID-19 confirmed by laboratory testing using polymerase chain reaction or other assay, and pneumonia documented by chest imaging. Patients were also required to be receiving oxygen therapy using either a high flow or low flow nasal cannula at the time of enrolment and have at the time of enrollment a baseline imputed PaO2/FiO2 ratio > 75 and ≤ 300. The PaO2/FiO2 was imputed from a SpO2/FiO2 determine by pulse oximetry using a non-linear equation. Patients could not be receiving either non-invasive or invasive mechanical ventilation at the time of enrolment. The primary endpoint was time to recovery through Day 60, with secondary endpoints of all-cause mortality at Day 60 and Day 30. Due to declining rates of COVID-19 hospitalizations and utilization of standard of care medications prohibited by regulatory guidance, the trial was stopped early. RESULTS: The pre-specified efficacy set consisted of the 261 patients with a baseline imputed PaO2/FiO2≤ 200 with 130 and 131 in the Auxora and placebo groups, respectively. Time to recovery was 7 vs. 10 days (P = 0.0979) for patients who received Auxora vs. placebo, respectively. The all-cause mortality rate at Day 60 was 13.8% with Auxora vs. 20.6% with placebo (P = 0.1449); Day 30 all-cause mortality was 7.7% and 17.6%, respectively (P = 0.0165). Similar trends were noted in all randomized patients, patients on high flow nasal cannula at baseline or those with a baseline imputed PaO2/FiO2 ≤ 100. Serious adverse events (SAEs) were less frequent in patients treated with Auxora vs. placebo and occurred in 34 patients (24.1%) receiving Auxora and 49 (35.0%) receiving placebo (P = 0.0616). The most common SAEs were respiratory failure, acute respiratory distress syndrome, and pneumonia. CONCLUSIONS: Auxora was safe and well tolerated with strong signals in both time to recovery and all-cause mortality through Day 60 in patients with severe COVID-19 pneumonia. Further studies of Auxora in patients with severe COVID-19 pneumonia are warranted. Trial registration NCT04345614.


Assuntos
Benzamidas , Tratamento Farmacológico da COVID-19 , Canais de Cálcio Ativados pela Liberação de Cálcio , Pirazinas , Síndrome do Desconforto Respiratório , Adulto , Benzamidas/uso terapêutico , Canais de Cálcio Ativados pela Liberação de Cálcio/antagonistas & inibidores , Humanos , Pirazinas/uso terapêutico , Respiração Artificial , SARS-CoV-2 , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...